Karunarathne's lab found that blue light exposure causes retinal to trigger reactions that generate poisonous chemical molecules in photoreceptor cells.
"It's toxic. If you shine blue light on retinal, the retinal kills photoreceptor cells as the signaling molecule on the membrane dissolves," Kasun Ratnayake, a Ph.D. student researcher working in Karunarathne's cellular photo chemistry group, said. "Photoreceptor cells do not regenerate in the eye. When they're dead, they're dead for good."
Karunarathne introduced retinal molecules to other cell types in the body, such as cancer cells, heart cells and neurons. When exposed to blue light, these cell types died as a result of the combination with retinal. Blue light alone or retinal without blue light had no effect on cells.
"No activity is sparked with green, yellow or red light," Karunarathne said. "The retinal-generated toxicity by blue light is universal. It can kill any cell type."
Karunarathne's lab found that blue light exposure causes retinal to trigger reactions that generate poisonous chemical molecules in photoreceptor cells.
"It's toxic. If you shine blue light on retinal, the retinal kills photoreceptor cells as the signaling molecule on the membrane dissolves," Kasun Ratnayake, a Ph.D. student researcher working in Karunarathne's cellular photo chemistry group, said. "Photoreceptor cells do not regenerate in the eye. When they're dead, they're dead for good."
Karunarathne introduced retinal molecules to other cell types in the body, such as cancer cells, heart cells and neurons. When exposed to blue light, these cell types died as a result of the combination with retinal. Blue light alone or retinal without blue light had no effect on cells.
"No activity is sparked with green, yellow or red light," Karunarathne said. "The retinal-generated toxicity by blue light is universal. It can kill any cell type."